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Absa'act-A simple. energy based. theory of plastic deformation is proposed and the extent to which it can
model the known characteristics of the response of real materials is briefty explored. It is shown that a yield
surface arises from the theory in a natural way and. in a particular case. takes the standard von Mises form.
Post yield behaviour incloding the Bauscbinger effect can also be incorporated within the framework of the
theory. After first presenting the physical motivation the theory is developed for the case of infinitesimal
one dimensional strain. Next the formalism is extended to an infinitesimal tensor strain field and finally to a
finite tensor strain field.

I. INTRODUCTION

The earlier theories of plasticity, which are reviewed in Hill's classical treatise [1], are based on
the following assumptions.

(a) There exists a scalar "yield function" which, when equated to zero, represents a closed
surface in stress space. For stresses within the initial yield surface the deformation is
completely elastic while for stresses outside the yield surface some plastic deformation occurs
and unloading recovery is not complete.

(b) It is also usually assumed that the yielding is, to a first approximation unaffected by a
moderate hydrostatic pressure or tension.

(c) The incremental components of the plastic strain tensor are proportional to the cor­
responding deviatoric stress components.

(d) The deformation for stresses outside the yield surface are governed by further "harden­
ing rules" which again can usually be stated in terms of a hardening function.
A large literature has developed over the succeeding years in which the implications of the
above assumptions have been examined in detail. Indeed it is difficult to find any modern
treatment of macroscopic plastic deformation which is not set within the framework of the
above assumptions, a notable exception being the work of Fitzgerald [2]. For many practical
problems the classical theory has proved to be of great use however, as Wempner and
Aberson[3] state, " ... the classical theory of plasticity has existed for decades in a generally
acceptable form yet few formal solutions have been obtained for numerous problems of
technological importance". In three important respects classical plasticity theory has not
proved entirely adequate. Firstly the incremental nature of assumption (c) has overstressed the
rate characteristics of plastic flow and clouded the connexion with finite deformation theory.
Secondly the theory as set out cannot immediately be integrated into the conceptual framework
of modern physics in that most branches of modern theoretical physics deal primarily with the
invariance, symmetry and stability properties connected with the energy and momentum of a
system. It has thus proved difficult to correlate the microstructural features with the macros­
copic deformation response. Lastly, it is not well suited to explaining recent experimental
results on multiple deformation modes as discussed by Bell[4, 5]. It would thus appear
allowable to consider if there exist other theoretical frameworks which may lead to more
progress in these three respects.

The experimental basis for assumption (c) is not very clear and indeed experiments by
Phillips and Gray [6] suggest it may not be strictly true. However, once the incremental concept
is accepted it is a natural progression, though as Hill points out not a necessary one, to
associate it with rate of change and indeed most dislocation theories are related to macroscopic
response through a rate equation. This is unfortunate as the principal exPerimental plastic
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stress-strain response with which we will be concerned is essentially a quasi-static
phenomenon. As Gilman[7] states dislocation acceleration times are very small OO-I2S) and,
except for low stresses, the speed of propagation is a considerable fraction of the elastic wave
speed. The formation time of a new state is thus far smaller than the loading rate except
possibly during very high rate loading such as shock waves and, as the experimental work
assembled by Bell[4] shows, for a wide range of strain rates the stress-strain relation is
essentially independent of the strain rate. As there thus appears to be no compelling reason to
couch our ideas in incremental terms it is here proposed to examine anew the possibilities of
constructing a total deformation theory in the light of recent advances in continuum mechanics.
The reason why this is not necessarily a futile quest was stated by Budiansky[8]. He recognized
that the limitations of the deformation theories then current were that they ignored the
possibility that the law governing the plastic response might exhibit independence of the stress
history for a limited range of loading regimes and concluded that, for a total loading path, a
deformation theory is a respectable competitor to other theories and should not be subjected to
a priori rejection on physical grounds.

Within the last l(~20 yr there has been an upsurge of interest in formulating and developing
in a rigorous way a general theory of the finite deformation of materials. Truesdell and
Toupin[9] and Truesdell and Noll [10] reviewed the earlier work and set the pattern for most of
the more recent developments in this field which has come to be known as continuum
mechanics. The response of particular materials is given by their constitutive equations which
relate the strain and various strain rates developed by the material to the locally applied stress.
The theory sets out general principles which the constitutive equations must satisfy if they are
to be physically acceptable. Within the general framework there is still a great deal of freedom
in fixing the form of the constitutive equations and to make further progress these equations are
classified according to their algebraic or differential structure. Whether such a classification is
useful or not will depend on whether the mathematical structure can be directly related to
chemical and microstructural characteristics of the material. Several particular forms of the
continuum theory have been generated aimed at producing a plasticity theory but they are
usually framed in general conformity with the classical plasticity assumptions as stated above
(Refs. [11-15], to mention but a sample of the more recent work. In Section 2 we will introduce
three postulates which may in certain instances, form a useful supplement to the general
principles in determining practical constitutive equations and in relating them to the materials
microstructural constitution.

It is now almost fifty years since it was first proposed that dislocation movement was the
primary source of plastic deformation and within that time experimental techniques have
advanced to the extent of actually showing a dislocation in an atomic lattice! However, as
Nabarro[16] points out in his comprehensive review of the theory of dislocations the theory
still stops short of a clear description of yielding in general. Although many effects can be
qualitatively explained by dislocation theory the complex interactions between many different
dislocations moving along differently oriented slip planes in the presence of other micro­
structural features such as grain boundaries, interstitial atoms, inclusions, etc. makes any
detailed calculation very complex and often intractable. The individual dislocations are often
known to form entanglements and forests, etc. so producing new features having a permanence
which may make it profitable to regard them as the governing sources for macroscopically
observable plastic deformation instead of the more basic dislocation. In the same way the
dislocation is merely a relatively permanent feature of the even more basic atomic structure. In
section 2 we will develop this idea and show how it indicates a set of postulates to supplement
the continuum theory and make ii more amenable to incorporation within this type of structured
response. The remainder of the paper is devoted to exploring the resultant plastic theory. The
overall response of a metal to a wide range of stress levels, loading rates and temperatures has
experimentally been observed to be very complex. In this paper we will restrict our attention to
ranges of the above variables for which dynamic and thermal effects can effectively be ignored
as I feel these cloud the simplicity of the approach that is being proposed. That the range of
these variables is not negligible is witnessed by the considerable wealth of experimental data
presented by Bell[4,5]. The sum of observations presented in these books provides a severe
critique for any theory and many aspects, such as the Savart-Masson effect cannot be
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incorporated in the proposed theory in an obvious way at present. However, Bell does find that
both the elastic and plastic response consists of a multiplicity of deformation modes rather than
just one and the theory proposed here is capable of taking account of this observation.

2. MICROSTRUCTURAL MOTIVATION FOR CONTINUUM THEORY

The most extensively studied relation between the microstructural interactions and the
macroscopic response of a material has been for the case of elastic deformation. In this case it
is assumed that a macroscopically homogeneous deformation can also be regarded as micro­
scopically homogeneous, so that the atoms within the region all separate or close to the same
extent. The process is reversible so that the mapping between initial and current positions of a
particle is 1-1 and, in a simply connected region of space, the usual compatibility relations
apply. The undeformed state is taken to be one in which the potential energy of the system is a
minimum and thus depends at least quadratically on the strain measure.

When the shearing component of the strain becomes sufficiently large it becomes energetic­
ally favourable for microscopic inhomogeneities to be created within the discrete atomic lattice
and for their regions of influence to spread in the form of dislocations. The macroscopic
deformation associated with dislocation movement is termed plastic deformation. On an
atomistic scale the deformation is not 1-1 and is not reversible. However, when a large number
of dislocations are activated it is then possible to define a meaningful statistical average of
plastic displacement, which contributes to the total macroscopic displacement and is in this
statistical sense 1-1 but cannot be directly associated with atomic movements. For pure single
crystals, particularly of hexagonal metals, the dislocations are constrained to lie in parallel glide
planes and once they start moving they pass through the crystal with very little work hardening
giving rise to Stage I or "laminar" plastic deformation. More generally dislocations travelling on
different glide planes interact with one another leading to mutual restriction of movement and
the formation of entanglements or dislocation forests or small regions of slightly misaligned
crystal which are called, in the terminology of X-ray crystallography, mosaic structures. This
type of deformation has been graphically termed "turbulent" plastic deformation. A question of
current interest is to what extent do these larger structures rather than dislocations per se
govern the materials macroscopic plastic response. If such structures do prove to be of prime
importance then by considering a small region of space, which nevertheless contains a large
number of such structures, one may associate, in 'a statistical sense, another plastic displace­
ment component giving the contribution of this structural movement to the overall macroscopic
response.

The above discussion has been developed with single crystals primarily in mind. Most metals
and alloys in common use are however polycrystalline and consist of a conglomerate of small
grains which may typically range from a few microns to above 1mm in diameter. Again it may
be possible to define a meaningful average grain displacement by considering the average
response within a spherical region centred on the point of interest and large enough to contain a
sufficiently large number of grains that the deviation from the mean is small.

The macroscopic deformation of a material may thus be regarded as consisting of the
superposition of several different components each acting on a different scale. Just such a
hierarchy of structures, created by a force driving the system far beyond the conditions for
thermodynamic equilibrium, has been proposed by Glansdorf and Prigogine[l7l, though in a
rather different context. Each scale of structure will depend on the smaller scale structural units
within it but if it is to be a recognisable unit with a significant lifetime then it must not be
strongly coupled to the other scales in the sense that its energy of formation and interaction
must depend primarily on the deformation appropriate to its scale alone. The atomic scale,
which in the context of this paper is associated with elastic displacement, has no energy of
formation or more correctly it is convenient to measure all other energies relative to this
energy. For other structures their energy of formation may be expected to be proportional to
their number which is also proportional to their contribution to the plastic strain. The
interaction energy between structures may be expected to be proportional to the number of
close encounters between such structures. This in turn is proportional to the square of the
number of these structures and thus is proportional to the square of the appropriate component
of plastic strain. The total energy will be the sum of the energies of each component and the
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degree to which each component structure will be brought into play may be expected to be such
that the total energy is a minimum. With the above physical model as motivation we put
forward three postulates on which a theory of plasticity may be based.

First postulate. That the total strain experienced by the body can be regarded as being
composed of the superposition of an elastic component and one or more plastic components.

Second postulate. The energy density associated with each component depends only on the
strain associated with that component and the total energy density is the sum of the energy
densities of all the components.

That the plastic and elastic energy contributioJ:lS are almost independent is implied by
experiments on the unloading and reloading of metals. On unloading the metal behaves
elastically and on reloading immediately it follows almost the same stress-strain curve and
continues along the plastic portion of the original stress-strain curve as though there had been
no interruption. This behaviour occurs for varying amounts of plastic strain indicating that the
elastic behaviour is not greatly affected by tht: varying plasticity induced. Provided the stress
involved during loading does not exceed twice the initial yield stress then, on unloading to zero
stress. the work done, as measured by the area under the stress-strain curve, is a measure of
the plastic work involved in producing the residual amount of plastic strain. It should be noted
that. although it is assumed that the plastic energy depends only on the plastic strain. it is not
assumed that the plastic energy is a single valued function of the plastic strain. Indeed, when
unloading is considered. it will generally be assumed that it is not single valued. A possible form
for the energy during unloading is presented in the next section. In the primitive form to be
presented in this paper no attempt is made to describe such rate effects as creep or the time
dependent raising of the elastic yield limit.

Third postulate. The component strains are such as to make the total energy a minimum.
For this essentially mechanical theory. if the atoms can be redistributed, subject to a given

total strain constraint. in such a way that the energy of the system is lowered. then either there
exist internal forces driving the system towards this state or else the system is in a state of
unstable equilibrium. Small thermal fluctuations militate against any prolonged stay in a position
of unstable equilibrium and dissipative mechanisms will tend to ensure the system moves
steadily towards the stable state.

At present the above principles can only be postulated and cannot be rigorously related to
any more basic principles. Indeed it is realized that they can only be approximations to a more
comprehensive theory which would have to include both kinetic and thermodynamic effects.
However, a new approach to the relevant basic statistical mechanics incorporating a hierachy
of structures related to forced instabilities as proposed by Glansdorf and Prigogine[l7] would
be required before a satisfactory basis for such a theory could be established.

3. ONE DIMENSIONAL INFINITESIMAL STRAIN THEORY OF PLASTICITY

Although. from a fundamental point of view. the above title seems to be inconsistent yet we
can display all the ideas most simply in this context without being encumbered with tensor
algebra and indeed much of the experimental and engineering work has been done on a one
dimensional basis. Let E be the total strain. E' be the elastic component and EP be the plastic
component and set

(3.1)

Let W' be the energy density due to elastic deformation and WP be the energy density due to
plastic deformation. Then in accord with the second postulate we can write

(3.2)

Considerable simplification occurs now if we consider only linear elastic strain and plastic
energy density only up to second order in the plastic strain.
Thus we take

(3.3)
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where E is Young's modulus

and

The total strain energy density W is then given by

or using eqn (3.1)
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(3.4)

(3.5)

(3.6)

We first consider the case of increasing total strain only and this implies increasing plastic
strain, thus EP ~ 0 and eqn (3.6) can be written as

(3.7)

In accord with the third postulate we seek to find the minimum value of W for a given total
strain E and setting 0WI OEP to zero gives

(3.8)

For values of E less than (AIlE), the minimum value of W occurs when EP is zero and thus for
strains below this value only elastic deformation occurs. The stress is given by the usual
expression

(3.9)

In the elastic region this gives T =BE and at the strain above which plastic deformation occurs,
and is therefore the yield point, T = AI' Thus we may associate AI with the yield stress. For
strains beyond the yield strain substitution of (3.8) into (3.7) gives the energy density as

(3.10)

The associated stress in the plastic region is then given by

(3.11)

giving

(3.12)

Thus A2 can be associated with a linear work hardening parameter. Substituting (3.8) into (3.1)
gives

(3.13)
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and using this expression in eqn (3.11) gives the simple relation

(3.14)

Thus there is no discontinuity in the stress as the total strain is increased beyond the yield
point. That stress is always simply related to the elastic component is shown by the following
argument. If E- is replaced in (3.2) by using (3.1) then W can be written in the form W(E, E') and the
third postulate then takes the form

(3.15)

where the subscript E is used in the thermodynamic sense to denote what is being kept
constant.

This defines EP as a function of E and W takes the form W(E, fP(E». The stress is then given
by

But using (3.t5) and noting from (3.1) that oE =af- for constant EP

aW
T =af-'

The using (3.2) gives finally

aw­
T= af-'

(3.16)

(3.17)

(3.t8)

The type of loading stress-strain curve which can be described by the theory so far is as shown
in Fig. 1 and is a reasonable first approximation to the stress-strain curve of many metals.

STRAIN (

Fig. 1. Loading stress-strain curve for one activated plastic deformation structure. (Vertical axis; "Stress
T"'; Horizontal axis; "'Strain e"').
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However, it cannot represent, even apptoximately cases such as steel where a yield drop
occurs. To get a better representation of the response of such materials let us suppose that
plastic deformation mechanisms depending on two different structures are brought into play.
Using the first two postulates of Section 1 we can write the total strain and the total strain
energy density in the forms

(3.19)

and

(3.20)

Using (3.19), (3.20) can be written in the form W= WeE, EI P, El) and the third postulate then
takes the form

(3.21)

and the stress is given by

T =dWeE, E.P(E), El(E»
dE

or using eqns (3.19H3.21)

(3.23)

Again it is convenient to simplify the presentation by considering that the energy densities
depend on at most the second order strains and that the strains are always increasing.
Thus

(3.24)

To find the minimum value of W subject to (3.19) we use Lagrange's method of undetermined
multipliers and set the coefficient multiplying each differential coefficient to zero giving

EE'=(= T or E' = (IE (3.25a)

A.(1) +A2(1)Et = (= T or EI P = «- A.(1»/A2(1) (3.25b)

A.(2) +A2(2)El = (= T or El = «( - A 1(2»/A2(2) (3.25c)

where

(= E +(A1(1)/A2(1» +(A.(2)/A2(2» = T (3.26)
(1 IE) +(l/A2(1» +(1IA2(2»

and use has been made of eqn (3.23). Thus' which equals T varies monotonically with E and, if
A.(2) > A.(l), only the first plastic mode is excited when A.(1) < T < A.(2); both plastic modes
are excited if T> A 1(2); and no plastic modes are excited when T < A ,(1). The stress gradient
is easily seen to have the form

T>Ar(2) (3.27a)
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dT /[1 1]dE = 1 E+ Ail) , (3.27b)

The type of stress-strain curve generated by the above theory is as shown in Fig. 2(a).
As the second plastic mode depends on the first mode it may happen that a certain amount

of first mode deformation must occur before the second mode can even be formed. If this is so
a yield drop situation could arise in the following way. First let us note that, when only one
plastic mode is excited, the condition for W to be a minimum, and therefore in a stable
condition, is that

Thus the stress gradient, which has the form

dT EAil)
dE = E+A2(l)

(3.28)

(3.29)

can be negative even up to the limit (dT/dE)-+-oo. By taking A~l) to be negative, AI(2) to be
less than At(l) and El =0 if Et' < [A t(2) - At(l)l/Ail) we have the possibility of describing a
yield drop as shown ,in Fig. 2(b). The upper and lower yield stress values are given by AI(1)
and A 1(2) respectively while if, the gradient of the stress-strain line beyond the first gradient

l­
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l­
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(b)

STRAIN (

Fig. 2. Two types of loadilll stress-strain curve which can be generated if two plastic deformation
structures are activated. (a) and (b). (Vertical axis: "Stress r": Horizontal axis: "Strain f").
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discontinuity is mI and beyond the second discontinuity is m2 then
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or ArtO = mlE
E-m.

(3.30)

(3.31 )

If N components of plastic deformation are successively excited then in the second order strain
approximation the total energy W is given by

(3.32)

The stress-strain curve will thus consist of N + I linear sections.
The stress at the rth join between sections will be at T = AI(r) and the strain is given by

and if the gradient of the line after the rth join is denoted by m,

I I ' I-=-+1:­m, E j-I A2(j)

then

(3.33)

(3.34a)

(3.34bl

If there is a continuous distribution of components the total energy W to the second order
strain approximation is given by

while the total strain is given by

E = E' +f: iP(s)ds

(3.35)

(3.36)

where iP(s) is the density of plastic strain per unit range of activated component states. From
the above the stress-strain relation is generated in the parametric form

(3.37a)

C3,37bl

AI(,,) is associated with the energy of formation of the ."th state and if we choose to label our
states in terms proportional to the energy then

If Art.,,) is then taken to be of the form

(K is a constant).

(B and fJ are constants).

(3.38)

(3.39)
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Then

and when

or

where we define
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T=K."

dE 1 1 1
- = -+- exp (f~.,,)-­
dT E Bf3 Bf3

dE 1 1 (flT) 1 ( T)Bf3 =E - =- exp (13.,,) =- exp - =- exp -
'dT E EKE Ta

dT E
dE = [l +(E!Eo)]

To = Klf3 and Eo = TolE.

(3.40a)

(3.40b)

(3.40c)

(3.41)

(3.42)

As in previous sections for E> Ea the stress-strain relation is linear. The above relations
correspond to the plastic deformation relation examined by Billington and Tate [18] which has a
stress-strain curve as shown in Fig. 3. Of particular interest in relation to the present theory is
the experimental work of Bell which he has presented in detail and in their historical setting in
two monographs [4; 5]. In these works BeD shows that for a great many different crystalline
solids there exists a uniaxial stress-strain relation which, when expressed in nominal form and

STRAIN E:

Fig. 3. Type of stress-strain relation found by Billinston and Tate[18]. (Vertical axis: "Stress T";
Horizontll1 axis: "Strain E").
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referred to the undeformed state, consists of several parabolic segments of the form

48S

(3.43~

where T is the nominal uniaxial stress, E is the nominal uniaxial strain, E" characterises a
particular parabola, Bo is a dimensionless universal constant, 8 is the absolute temperature of
the specimen, 8m the absolute melting temperature of the specimen material and p.(0) is the zero
point isotropic elastic shear modulus.

First we must extend slightly the presentation given above to the case of several sets of
continuous distributions of plastic components. That is, we consider the total energy to be of
the form

(3.44)

while the total strain is given by

(3.45)

Within each "P' deformation mode the stress-strain relation is generated in the parametric form

(3.46)

(3.47)

Now A/(71) is associated with the energy density of formation of the· 71th state and if we
choose to label our states in terms proportional to the energy density then

A/(71) = K i71 (Ki are constants).

If the "j" segment corresponds to the parabolic deformation mode of eqn (3.43) then

dE /(2)rl2dT = 2T 3 p.(O)Bo(1- 819m ).

Thus (3.47) can be written in the form

where

Differentiating (3.50) w.r.t. "71" then gives

(3.48)

( 3.49)

(3.50)

(3.51 )

(3.52)

Thus within each "P' mode the second order interaction term would be simply a constant. If
indeed we label our states in terms of the energy density A.i(71) = 71 then A 2i can be written in
the form

(3.53)
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Having considered a loading pulse let us now consider unloading. Let the plasticity induced
during loading be denoted by EP f and that during unloading by EP ~ • The total plastic strain is
then given by

EP = E::.!. - EP ~ (Note EP ~ will be positive numerically). (3.54)

To make some estimate of the energy of deformation it would seem reasonable to expect
that dislocations or other structures, after they have been formed, will become locked in
entanglements and cannot easily be destroyed except through thermal agitation. If this is true it
may be energetically more favourable to create new dislocations or other structures giving rise
to plastic strain in the other direction. Thus, to second order in the plastic strain, it will be
assumed that on unloading the plastic component of the energy WP ~ is given by

(3.55)

(3.56)

Thus the total energy on unloading is given by

(3.57)

or

(3.58)

Applying the third postulate gives the minimum energy when

(3.59)

or

Thus as long as

E> Emu - 2(A I/E).

(3.60)

(3.61)

EP ~ must be zero and the recovery will be entirely elastic.
It may be noted that the arguments leading to the stress relation T = (aWt/aEt ) of (3.18)

remain essentially unaltered except that EP must be replaced by EP ~ and thus in all cases

(3.62)

and in the particular case being considered

(3.63)

and using (3.59) this gives for E < EIIIU - (2A t /E)

(3.64)

or

(3.65)
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which, comparing with (lI2), is parallel to. the plastic part of the loading curve. A typical curve
of loading and unloading described by the above theory is as shown in Fig. 4 and this form of
the theory clearly gives rise to a Bauschinger effect. Just such a loading curve has been found
experimentally by Lin and Ito[l9] who also give extensive reference to other experimental
papers showing similar loading curves. If the loading is reversed before EP ~ is activated the
loading curve will retrace the unloading elastic portion of the curve until the former maximum
stress is reached after which it will continue along the plastic stress-strain curve as though
there had been no unloading interruption.

If "k" modes are excited before unloading occurs then, provided the higher k modes do not
inhibit activation of the lower modes, we can proceed as above

r=I,2 ... k (3.66)

and

giving a total cntrgy density on unloading

W i - I B.2 ~ (2A ' ptA 'P I A ' p2
)- '2 E +~ I E ,max - I E, + '2 2 E, .

(3.67)

(3.68)

Using Langranges method of, undetermined multipliers again and the third postulate gives

-A{+A{E/,=(=T

....

r= l. .. k.

(3.69)

(3.70)

STRAIN (

Fig. 4. Typical loading and unloading curve when one plastic deformation structure is activated. (Vertical
axis: "Stress Tn; Horiiontal axis; "Strain t n).

UVnlll. N•.~F
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Thus

and using (3.66)

or

A. TATE

E,!' = (T +A{)/A{

Tf -A'
"',P t = ",P f _ '" P = max I
" ",max '" A{

(3.71)

(3.72)

E,!' ~ = (T ~ax - T - 2A{)/A{. ( 3.73)

Thus E,!' t is not activated until T < T~x - 2A { and on unloading the stress-strain curve will
mirror the original loading curve starting with the elastic part of the curve.

4. THREE DIMENSIONAL INFINITESIMAL STRAIN THEORY

The extension to three dimensions involves introducing the infinitesimal strain tensor E but
otherwise follows in a straightforward manner the same development q the one dimensional
theory. We start by considering only loading and assume the total strain can be expressed as the
sum of an elastic and a plastic component

(4.1)

and that the total energy W can also be expressed as a sum of the elastic and plastic energies

(4.2)

or using (4.1)

(4.3)

Now it is convenient to express each tensor component as the sum of an isotropic and a
deviatoric part

thus

and

E = E"l + E' (for each E tensor) (4.4)

(4.5a)

(4.5b)

In accord with the third postulate we find the minimum value of W for a given total strain E

from (4.3) by setting

which then gives EP as a function of E.

The stress T is now given by

T =ilW(E, EP(E»
ilE

(4.6)

(4.7)
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or

T _ (OW) + (aw) OEP

- OE e" OEP e OE'

But using (4.6) and noting that OE = OE' if EP is constant

Now resolving T into isotropic and deviatoric parts gives immediately

T"- 1oW'. T'- oW'
-:3 OE'" - OE'"
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(4.8)

(4.9)

(4.10)

Restricting our discussion to isotropic materials, the linear elastic strain energy has the form

9., "
W' = "2 KE' - +OE' : E' (4.11)

where K is the bulk modulus and 0 the shear modulus or modulus of rigidity. It is usual to
assume that plastic deformation occurs incompressibly in which case EP• is zero and for a{l
isotropic material WP takes the form

(4.12)

where 11~ and III~ are the second and third invariants of the deviatoric components of plastic
strain. Now using (4.5) and (4.6) the total energy density takes the form

(4.13)

From (4.5), (4.10) and (4.11) itfollows that the isotropic or hydrostatic component of stress Til is
given by

(4.14)

and as, in seeking the minimum value of W from (4.13) keeping E constant, the term involving
E" vanishes on differentation. it follows that the hydrostatic stress will not affect the yield
stress. This result therefore is a rigorous consequence of the assumptions contained within the
theory this far and does not have to be added as an extra assumption.

To find the minimum value of W set each partial derivative to zero

(4.15)

Multiplying eqn (4.15) by :EP
'. adding using the summation convention and using Eulers

theorem on homogeneous functions (i.e. I(ofloxj)xj = nf if f is homogeneous of degree n in the
x/s) gives

Now let us set

- 20 '. p' 4011' 2°
WP

II' 3 awp III' - 0E ,E + p+ all' p+ alII' p-.
P P

EP' = A(Il'. III')E'

(4.16)

(4.17)
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where II' and III' are the second and third invariants of the total strain deviator. Thus

(4.18)

Substituting in (4.16)

-4GAII'+ 4GA 211' +2A 2 (aW~) II' +3A 3 (aw~) III' = O. (4.19)
allP 1Ij,zA211' alIIP Illj,= A3111'

Solving this equation specifies A as a function of II' and III' and then using the values for E'

which make A zero specifies the yield surface. In particular let us set

(4.20)

Equation (4.19) then takes the form

or

The yield surface is thus given by

(11')1/2 = Ai/4G.

In the elastic region

E' = E" = T'/2G

thus

where 12 is the second invariant of the stress tensor.
Substituting in (4.22) gives

which is von Mises form of the yield criterion.
When the material is stressed beyond the yield surface the stress is still given by

aw', ,
T' = a." =2GE' =2G(E'- EP

).

Now using (4.17)

T' = 2G(1- A)E'

and from (4.21)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

By extending the plastic energy to have two or more dependent components, for example

(4.29)
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one can produce stress-strain curves showing a yield drop and having two yielding surfaces.
The extension to a continuous distribution of states and to the case of unloading follows the

same development as the one dimensional case discussed in Section 2, namely, in the case
of a continuous distribution a density of states EP(S) must be introduced and when unloading
occurs an unloading plastic strain EP(S)+ must then be introduced.

5. FINITE THREE DIMENSIONAL STRAIN THEORY

The plastic deformation can be very large, of the order 30% strain or even more and for
such cases the theory developed above cannot be regarded as having more than qualitative
significance. We therefore seek an extension of the above theory applicable to finite strain and
falling within the framework of continuum mechanics as developed by Truesdell and his school
but having its roots in the work of Reiner, Rivlin and Treloar and even back to the Cosserats.
Let the initial or reference coordinates be denoted by X with components XG and the current
coordinates be x with components Xi. Let the total displacement be composed of a plastic
displacement on top of which an elastic displacement is superimposed. Let the current plastic
configuration be specified by coordinates XP with components xpa. Thus

(5.1)

The chain rule of differentiation then leads to the following relation between the deformation
gradients

(5.2)

where F is the total deformation gradient and poe and r are the elastic and plastic components.
Using the second postUlate the total energy density can be written in the form

W= W~+ WP (5.3)

where W~ depends only on the elastic strain components and WP depends only on the plastic
strain components. Care must be taken in choosing the form which W~ takes however, because
although it is assumed to be independent of the plastic strain it will be shown that it may have
to depend on the. plastic rotation, a point we will return to shQrtly.

Using the polar decomposition theorem the deformation gradients can be written in the
following form:

Using the above

F=VR=RU; (5.4)

(5.5)

(5.6)

Defining

and

(5.7)

(5.8)

(5.9)
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we can write (5.7) in the alternative form

(5.10)

(5.11)

(5.12)

Using (5.5), (5.8) and (5.10)

(5.13)

similarly using (5.6), (5.9) and (5.10)

(5.14)

From the relations (5.8). (5.9), (5.13) and (5.14) it is easily shown that VP, UP and VP all have the
same principal values and if the principal vectors are vP, uP and ijP then they are related by

(5.15)

Similarly V', U' and U' all have the same principal values and if the principal vectors are v', u'
and ii' they are related by

(5.16)

Applying the principle of material fr~e indifference to the energy it is clear that each energy
term must depend only on objective tensors that are invariant under -observer transformations
and such a set of tensors are U, U' and Up. Thus we will write (5.3) in the form

W = W'(U') + WP(UP)

= W'(RpTU'R') + WP(UP).

(5.17)

(5. 17a)

At first sight it seems strange that W' must depend on U', and hence on RP, rather than on U'
alone. However, if the elastic response is anisotropic its elastic energy must contain orientation
terms which will, under the above assumptions, be measured relative to the plastic configura­
tion rather than the initial state.

Using equation (5.12) gives

(5.18)

and then applying the third postulate gives

(5.19)

from which UP can be found as a function of U.
In the absence of thermal effects the energy equation takes the form

(5.20)

where the dot denotes the material time derivative, T is the stress tensor and it is to be noted
that W is the energy per unit mass.

Differentiating eqn (5.4) and substituting in (5.20) then gives

. . oW·
TRU + TRU = pRU-au U. (5.21)
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As Rand U can be chosen independently It must be zero and

or

RT«TiR iU' fJ - u« aW U· ,.
i 'i fJ 'Y - P 'Y aU: ,..

Letting

or

gives

(5.22)

(5.23)

-r«_u«aw
or IIJ - 'Y au:' (5.24)

Using (5.18) and (5.19) we can write

W = W(U, UP(U»

so that

aW (aw) (aw) aup
au = au UP + aUP u <lU

then using (5.19)

<lW (aw)au = au uP'

But using eqn (5.12) with UP regarded as constant gives

From (5.24) (5.26) and (5.27)

(5.25)

(5.26)

(5.27)

(5.28)

Thus, as we have found previously, the stress depends only on the elastic strain energy. From
the definitions of f and fie eqn (5.28) can also be written in tbe form

awe
T= pV' ave or

It is shown in texts on continuum mechanics that

Ti _ v: ei awe
'i - P • 'iifli' (5.29)

det U=pofp = det Ve det UP (5.30)

where Po is the initial density. Incompressibility is therefore expressed as det U=1 rather than
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the infinitesimal condition T1'E = O. It thus seems expedient to replace the division of ~ into an
isotropic and deviatoric part by the following decomposition.

U = UXXUX;

where

det UX = I; det Uex = I; detUPX = I

(5.3Ia-e)

(5.32a-e)

substituting (5.31) into (5.12), taking determinants and using (5.32) gives

then using (5.12), (5.13) and (5.33)

taking the determinant of both sides of (5.3la) gives

un =(det U)I/3

Now let us find the effect of this decomposition on the stress. From eqn (5.24)

(5.33)

(5.34)

(5.35)

(5.36)

Now

T=U aw
au r.- a - U a aw

or (J - 'Y aU Il
'Y

(5.37)

and

Ua a UaaU"" a Uaau,,"" a
'Y au/ = 'Y au/ aUJOC + 'Y au/ alJ:ii

where rJU(J'Y is the co-factor of U/ in the determinant. By an elementary theorem in algebra this
product is zero unless a equals f3 and then the prodUct is det U.
Thus

a adet U _
U'Y --w:r- 8a(j det U.

'Y

Therefore using (5.35)

Also

ualJU,,""_lJ__ ua[ __l_aUXX UI'+_I_au:]_a_
,. lJu! au,,"" - 'Y UU2 au: " un au: au.xl'

__ !~ u,.,._a_ u. a
- 30 a(j " au,,"" + ,. au/Ii'

(5.38)

(5.39)

(5.40)
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( 5.41)

The trace of the second term on the right hand side 'of this equation vanishes and thus the
proposed decomposition of U implies a decomposition of t into isotropic and deviatoric parts.
Using our previous notation

(5.42)

(5.43)

Using eqn (5.28) and following the same argument as above we can show that eqns (5.42) and
(5.43) apply if we replace W by W~ and U by U~ giving

(5.44)

(5.45)

To find the minimum value of the total energy density

We set each partial derivative U" to zero

( aw ) aw~ (a(j~") aw"
au,r' u =aO.,~ au;pa + au,r =0.

Now from eqn (5.12)

(ao,,~) =_ iJ ~"(UP) -1/3
au,r u a "

thus

(aO,,~) Tr"a=_(j~"aU/3pa uV/3 " •

Multiplying (5.47) by U/3pa then gives

(j ~ a!,,~ =u PG~ [= t by eqn (5.28)]
"au,,~ /3 aU/3PG

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

as the minimum energy condition.
As we have no guide as to what form W" must take in general we will from henceforth

restrict our discussion to isotropic materials. In this case W~ and WP are functions of the
principal invariants of U- and UP resPectively.
Thus

(5.51)
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and

(5.52)

Substituting in (5.50) and using Eulers theorem on homogenous functions

oW' oW' oW' aWP awp aWP
01, I, +2 aI1, II, +3 0111, III, = alp Ip+2 aIIp IIp +3 aIIIpIIIp- (5.53)

If we make the usual assumption that plastic deformation occurs incompressibly then UPJIX is
unity and Om: equals UJIX. For a given UJIX, O'JIX is thus fixed and from eqn (5.42) it is clear that
the isotropic or hydrostatic stress will have no effect on the yield stress.

As the state of minimum energy in the absence of a disturbing force corresponds to
U' =UP =1 it is convenient to define new strain tensors as follows

i' = U'-1

e=U-l.

If e is very small then we can let

and

Using (5.31) and neglecting second order small quantities

Thus for small deformations eXx
~ e" and eX ~ e' and to the same order of accuracy

and

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

which corresponds directly with eqn (4.10).
To follow the analogy with previous sections further we would require simple expressions

for the elastic and plastic energy components. However, relatively little has been done in this
direction particularly for the plastic energy term. We will therefore set up a system which has
an obvious analogy with the previous section. For this it is convenient to re-write eqn (5.53) in a
different form. If we decompose e into an istropic and deviatoric part we can write (5.56) in the
form

U = (I + e")1 4- e'.

Then after some algebra it can then be shown

I :1 +2/1 a~1 +3111 0:11 = (I +e") 0: 11 +2[1' a:/' +3lll' iJ~/'

(5.62)

(5.63)
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where 1. II. III are the first. second and third invariants of U and II', Ill' are the second and third
invariants of e'. Thus finally eqn (5.53) can be written in the form

_,0 awe 211' awe 3111' awe (1 pO) aw
p

211' aw
p

3111' aW
P

(1 + e ) ai" + , aII~ + • alII~ = + e ae P" + P aII~ + P alII~ (5.64)

which promises to be a useful form of the criterion for determining the yield surface when a
suitable expression for the plastic energy density becomes available.

6. CONCLUDING REMARKS

The theory of plasticity proposed in this paper is based on the three postulates enunciated in
Section 2, whose physical motivation is also given in that section. These postulates provide a
useful adjunct to the general principles of continuum mechanics and, as we have shown, the
theory appears to have the potential to model most of the main features of plasticity in
situations where dynamic and thermal effects are not dominant. The sharp changes in the
character of the stress-strain relation is reminiscent of the catastrophes of Thom [20) and this
aspect of the theory may be worth exploring further.
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